Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Immunopharmacol Immunotoxicol ; 46(2): 255-263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252282

RESUMO

OBJECTIVE: Ulcerative colitis (UC), a chronic and refractory nonspecific inflammatory bowel disease, affects millions of patients worldwide and increases the risk of colorectal cancer. Teprenone is an acylic polyisoprenoid that exerts anti-inflammatory properties in rat models of peptic ulcer disease. This in vitro and in vivo study was designed to investigate the effects of teprenone on UC and to explore the underlying mechanisms. METHODS: Human intestinal epithelial cells (Caco-2 cells) serve as the in vitro experimental model. Lipopolysaccharide (LPS, 1 µg/mL) was employed to stimulate the production of pro-inflammatory cytokines (interleukin [IL]-6, IL-1ß, and tumor necrosis factor [TNF]-α), Toll-like receptor-4 (TLR4), MyD88 expression, and NF-κB activation. A trinitrobenzene sulfonic acid (TNBS)-induced chronic UC rat model was employed for the in vivo assay. RESULTS: Pro-inflammatory cytokine stimulation by LPS in Caco-2 cells was inhibited by teprenone at 40 µg/mL through the TLR4/NF-κB signaling pathway. Teprenone attenuated TNBS-induced UC, decreased myeloperoxidase and malondialdehyde, induced TLR4 expression and NF-κB activation, and increased glutathione and zonula occludens-1 level in the rat colonic tissue. Moreover, Fusobacterium, Escherichia coli, Porphyromonas gingivalis elevation, and Mogibacterium timidum decline in UC rats were inhibited by teprenone. CONCLUSION: Based on our results, the protective effects of teprenone for UC may be related to its ability to modulate the gut microbiota and reduce the inflammatory response.


Assuntos
Colite Ulcerativa , Colite , Diterpenos , Microbioma Gastrointestinal , Ratos , Humanos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Células CACO-2 , Lipopolissacarídeos/toxicidade , Citocinas/metabolismo , Trinitrobenzenos , Fator de Necrose Tumoral alfa , Colite/induzido quimicamente , Modelos Animais de Doenças
2.
Inflammation ; 47(1): 438-453, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37880427

RESUMO

Ulcerative colitis is an inflammatory bowel disease with a complex aetiology characterised by abnormal immune responses and oxidative stress-induced tissue injury. Inflammatory cells play an important role in the progression of this pathology through the overproduction of reactive oxygen species (ROS) from various sources including the NADPH oxidases (NOXs). The aim of this study was to investigate the preventive effect of apocynin, a natural antioxidant molecule and a selective inhibitor of NOXs, on acetic acid (AA)-induced ulcerative colitis in rats. Our results first confirmed that apocynin has a high free radical scavenging capacity as well as a potent iron chelating ability. Oral pretreatment of rats with apocynin (200 mg/kg and 400 mg/kg) for 7 days prior to AA-induced colitis suppressed the increase in pro-oxidant markers in colonic homogenates and preserved colonic cytoarchitecture from acetic acid-induced damage. Oral administration of apocynin (200 mg/kg and 400 mg/kg) also reduced several systemic inflammatory markers such as alkaline phosphatase, iron, pro-inflammatory cytokines, C-reactive protein and myeloperoxidase. This study shows that apocynin protects rats from acetic acid-induced colonic inflammation and suggests that apocynin may have a promising beneficial effect in the prevention of ulcerative colitis.


Assuntos
Acetofenonas , Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Ácido Acético , Colite/induzido quimicamente , Espécies Reativas de Oxigênio , NADPH Oxidases , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
J Gastroenterol Hepatol ; 39(3): 512-518, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38073066

RESUMO

BACKGROUND AND AIM: Although diet is one of the potential environmental factors affecting ulcerative colitis (UC), evidence is not sufficient to draw definitive conclusions. This Japanese case-control study examined the association between the consumption of coffee, other caffeine-containing beverages and food, and total caffeine and the risk of UC. METHODS: The study involved 384 UC cases and 665 control subjects. Intake of coffee, decaffeinated coffee, black tea, green tea, oolong tea, carbonated soft drinks, and chocolate snacks was measured with a semiquantitative food-frequency questionnaire. Adjustments were made for sex, age, pack-years of smoking, alcohol consumption, history of appendicitis, family history of UC, education level, body mass index, and intake of vitamin C, retinol, and total energy. RESULTS: Higher consumption of coffee and carbonated soft drinks was associated with a reduced risk of UC with a significant dose-response relationship (P for trend for coffee and carbonated soft drinks were <0.0001 and 0.01, respectively), whereas higher consumption of chocolate snacks was significantly associated with an increased risk of UC. No association was observed between consumption of decaffeinated coffee, black tea, green tea, or oolong tea and the risk of UC. Total caffeine intake was inversely associated with the risk of UC; the adjusted odds ratio between extreme quartiles was 0.44 (95% confidence interval: 0.29-0.67; P for trend <0.0001). CONCLUSIONS: We confirmed that intake of coffee and caffeine is also associated with a reduced risk of UC in Japan where people consume relatively low quantities of coffee compared with Western countries.


Assuntos
Café , Colite Ulcerativa , Humanos , Cafeína/efeitos adversos , Cafeína/análise , Japão/epidemiologia , Estudos de Casos e Controles , Colite Ulcerativa/epidemiologia , Colite Ulcerativa/etiologia , Colite Ulcerativa/prevenção & controle , Fatores de Risco , Chá/efeitos adversos
4.
Nutrients ; 15(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960213

RESUMO

Ulcerative colitis (UC) is a non-specific inflammatory bowel illness characterized by intestinal mucosal barrier degradation, inflammation, oxidative damage, and gut microbiota imbalances. Rosa roxburghii Tratt Fruit extract (RRTE) was extracted from Rosa roxburghii Tratt fruit, exhibiting an excellent prevention effect against UC; RRTE could prevent the damage of DSS-induced human normal colonic epithelial (NCM 460) cells, especially in cell viability and morphology, and oxidative damage. Additionally, in UC mice, RRTE could limit the intestinal mucosal barrier by increasing the expression of intestinal tight junction proteins and mucin, reducing inflammation and oxidative damage in colon tissue. More importantly, RRTE can increase the abundance of beneficial bacteria to regulate gut microbiota such as Ruminococcus, Turicibacter, and Parabacteroides, and reduce the abundance of harmful bacteria such as Staphylococcus and Shigella. Furthermore, transcriptomics of colonic mucosal findings point out that the beneficial effect of RRTE on UC could be attributed to the modulation of inflammatory responses such as the IL-17 and TNF signaling pathways. The qPCR results confirm that RRTE did involve the regulation of several genes in the IL-17 signaling pathway. In conclusion, RRTE could prevent DSS-induced damage both in vitro and in vivo.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Rosa , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Frutas , Interleucina-17 , Transdução de Sinais , Colo , Inflamação , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Medicina (Kaunas) ; 59(11)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38004039

RESUMO

Background and Objectives: Urtica dioica, a source of bioactive functional compounds, provides nutritional and gastrointestinal therapeutic benefits. This study attempted to investigate the prophylactic coloprotective action of an aqueous extract of Urtica dioica (AEUD) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). Materials and Methods: Phenolic compounds, total sugar, and mineral levels were determined in AEUD. Then, AEUD at different doses (50, 100, and 200 mg/kg, BW, p.o.) and mesalazine (MESA) as a standard treatment (100 mg/kg, BW, p.o.) were given orally for 21 days. Acute colitis was induced by administering drinking water with 5% (w/v) DSS for 7 days. Body weight variation, fecal occult blood, and stool consistency were determined daily. The severity of colitis was graded according to colon length, disease activity index (DAI), histological evaluations, and biochemical alterations. Rats orally administered DSS regularly developed clinical and macroscopic signs of colitis. Results: Due to its richness in phenolic and flavonoid compounds (247.65 ± 2.69 mg EAG/g MS and 34.08 ± 0.53 mg EQt/g MS, respectively), AEUD markedly ameliorated DAI, ulcer scores, colon length shortening, colonic histopathological changes, and hematological and biochemical modifications. Taken together, AEUD treatment notably (p < 0.01) suppressed DSS-induced UC by reducing oxidative stress via lowering MDA/H2O2 production and stimulating the effect of enzyme antioxidants as well as attenuating inflammation by decreasing CRP levels by 79.5% between the DSS and DSS + AEUD-50 groups compared to the MESA group (75.6%). Conclusions: AEUD was sufficient to exert a coloprotective effect that might be influenced by its bioactive compounds' anti-inflammatory and antioxidant capabilities.


Assuntos
Colite Ulcerativa , Colite , Urtica dioica , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Sulfato de Dextrana/efeitos adversos , Peróxido de Hidrogênio/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Mesalamina/efeitos adversos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Modelos Animais de Doenças
6.
Nutrients ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37892453

RESUMO

Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease with an unknown pathogenesis and increasing incidence. The objective of this study is to investigate the impact of prophylactic treatment with Cordyceps militaris on UC. The findings demonstrate that prophylactic supplementation of C. militaris powder effectively mitigates disease symptoms in DSS-injured mice, while also reducing the secretion of pro-inflammatory cytokines. Furthermore, C. militaris powder enhances the integrity of the intestinal mucosal barrier by up-regulating MUC2 protein expression and improving tight junction proteins (ZO-1, occludin, and claudin 1) in DSS-injured mice. Multiomics integration analyses revealed that C. militaris powder not only reshaped gut microbiota composition, with an increase in Lactobacillus, Odoribacter, and Mucispirillum, but also exerted regulatory effects on various metabolic pathways including amino acid, glyoxylates, dicarboxylates, glycerophospholipids, and arachidonic acid. Subsequent analysis further elucidated the intricate interplay of gut microbiota, the intestinal mucosal barrier, and metabolites, suggesting that the microbiota-metabolite axis may involve the effect of C. militaris on intestinal mucosal barrier repair in UC. Moreover, in vitro experiments demonstrated that peptides and polysaccharides, derived from C. militaris, exerted an ability to change the gut microbiota structure of UC patients' feces, particularly by promoting the growth of Lactobacillus. These findings suggest that regulatory properties of C. militaris on gut microbiota may underlie the potential mechanism responsible for the protective effect of C. militaris in UC. Consequently, our study will provide support for the utilization of C. militaris as a whole food-based ingredient against the occurrence and development of UC.


Assuntos
Colite Ulcerativa , Colite , Cordyceps , Ingredientes de Alimentos , Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Pós , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/prevenção & controle , Suplementos Nutricionais , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
7.
Aliment Pharmacol Ther ; 58(5): 516-525, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37464899

RESUMO

BACKGROUND: Limited prospective studies that have examined the association of dietary fibre with IBD have provided inconsistent evidence. AIM: To examine any associations between dietary fibre intake and subsequent incidence of IBD, Crohn's disease (CD) and ulcerative colitis (UC) METHODS: We conducted a prospective cohort study of 470,669 participants from the UK Biobank and estimated dietary fibre intake from a valid food frequency questionnaire at baseline. Incident IBD was ascertained from primary care data and inpatient data. Cox proportional hazard models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between dietary fibre intake and the risk of IBD, CD and UC. RESULTS: During an average follow-up of 12.1 years, we ascertained 1473 incident IBD cases, including 543 cases of CD and 939 cases of UC. Comparing the lowest quintiles, an inverse association was observed between dietary fibre intake and risk of IBD (HR 0.74, 95% CI 0.58-0.93, p = 0.011) and CD (HR 0.48, 95% CI 0.32-0.72, p < 0.001), but not UC (HR 0.92, 95% CI 0.69-1.24, p = 0.595). For specified sources, dietary fibre intake from fruit and bread decreased the risk of CD, while dietary fibre intake from cereal decreased the risk of UC. CONCLUSIONS: Higher consumption of dietary fibre was associated with a lower risk of IBD and CD, but not UC. Our findings support current recommendations to increase the intake of dietary fibre.


Assuntos
Colite Ulcerativa , Doença de Crohn , Humanos , Estudos Prospectivos , Doença de Crohn/epidemiologia , Doença de Crohn/prevenção & controle , Doença de Crohn/etiologia , Colite Ulcerativa/epidemiologia , Colite Ulcerativa/prevenção & controle , Colite Ulcerativa/complicações , Frutas , Fibras na Dieta , Incidência , Fatores de Risco
8.
Lett Appl Microbiol ; 76(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37133416

RESUMO

In this research, the synbiotic effects of the probiotic Lactiplantibacillus plantarum YW11 and lactulose on intestinal morphology, colon function, and immune activity were evaluated in a mouse model of UC induced by dextran sulfate sodium (DSS). The results revealed that L. plantarum YW11 in combination with lactulose decreased the severity of colitis in mice and improved the structure of the damaged colon, as assessed using colon length and disease condition. Moreover, colonic levels of pro-inflammatory cytokines (IL-1ß, IL-6, IL-12, TNF-α, and IFN-γ) were significantly lower and anti-inflammatory factors (IL-10) were significantly higher following the synbiotic supplementation. The synbiotic also exerted antioxidant effects by up-regulating SOD and CAT levels and down-regulating MDA levels in colon tissue. It could also reduce the relative expression of iNOS mRNA and increase the relative expression of nNOS and eNOS mRNA. Western blot confirmed the increased expression of c-Kit, IκBα, and SCF and significantly reduced expression of the NF-κB protein. Therefore, the combination of L. plantarum YW11 and lactulose exerted therapeutic effects mainly through the NF-κB anti-inflammatory pathway, which represented a novel synbiotic approach in the prevention of colonic inflammation.


Assuntos
Colite Ulcerativa , Probióticos , Simbióticos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Lactulose/metabolismo , Lactulose/farmacologia , Lactulose/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/metabolismo , Colo/metabolismo , Anti-Inflamatórios/uso terapêutico , Probióticos/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
9.
J Food Sci ; 88(7): 3102-3118, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37219382

RESUMO

In this study, male mice were treated with fermented and unfermented Lactobacillus plantarum, Lactobacillus bulgaricus, and Lactobacillus rhamnosus black wolfberry juice (10 mL/kg/day) for 40 days, and their prophylactic effects on ulcerative colitis (UC) induced by dextran sodium sulfate were investigated. The intervention of black wolfberry juice reduced the levels of pro-inflammatory cytokines and increased the content of anti-inflammatory cytokines in the serum and colon. In addition, the pathological changes in colon tissue were alleviated, the expression of Bcl-2 protein in the colon was enhanced, and the intestinal microbiota of the mice was regulated, with an increase in Bacteroidetes and a decrease in Helicobacter. These results suggested that black wolfberry juice had an anti-UC function and Lactobacillus fermentation enhanced the anti-inflammatory effect of black wolfberry juice by modulating the intestinal microbiota.


Assuntos
Colite Ulcerativa , Colite , Lycium , Probióticos , Masculino , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Sulfato de Dextrana/efeitos adversos , Lactobacillus/metabolismo , Colo/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Probióticos/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente
10.
J Pharm Pharmacol ; 75(8): 1111-1118, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37226187

RESUMO

OBJECTIVES: Shaoyao Gancao Decoction (SGD) is a well-known Chinese herbal prescription used to treat ulcerative colitis (UC). This study was designed to evaluate the effect of SGD in dextran sulfate sodium-induced UC and to reveal the potential mechanism. METHODS: A UC mouse model was established by the administration of dextran sulfate sodium. The mice were given SGD extract intragastrically for 7 days. Histological pathology, inflammatory factors, and ferroptosis regulators were determined in vivo. In addition, ferroptotic Caco-2 cells were prepared to investigate the underlying mechanism of the effects of SGD. KEY FINDINGS: The results showed that SGD reduced the disease activity index, the level of inflammatory factors, and histological damage in mice with UC. Moreover, SGD down-regulated the level of ferroptosis in cells in colon tissue, as evidenced by a reduced iron overload, decreased glutathione depletion, and a lower level of malondialdehyde production, compared with the model group. Correspondingly, similar effects of SGD on ferroptosis were observed in Erastin-treated Caco-2 cells. The results of our in vitro reactive oxygen species assays and the changes in mitochondrial structure observed by scanning electron microscopy also supported these results. CONCLUSION: Taken together, these findings suggest that SGD protected against UC by down-regulating ferroptosis in colonic tissue.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Ferroptose , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Sulfato de Dextrana/toxicidade , Células CACO-2 , Medicamentos de Ervas Chinesas/efeitos adversos , Colo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colite/patologia
11.
Toxicol Mech Methods ; 33(6): 480-489, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36872571

RESUMO

Ulcerative Colitis (UC) is a disease that negatively affects quality of life and is associated with sustained oxidative stress, inflammation and intestinal permeability. Vitamin D and Curcumin; It has pharmacological properties beneficial to health, including antioxidant and anti-inflammatory properties. Our study investigates the role of Vitamin D and Curcumin in acetic acid-induced acute colitis model. To investigate the effect of Vitamin D and Curcumin, Wistar-albino rats were given 0.4 mcg/kg Vitamin D (Post-Vit D, Pre-Vit D) and 200 mg/kg Curcumin (Post-Cur, Pre-Cur) for 7 days and acetic acid was injected into all rats except the control group. Our results; colon tissue TNF-α, IL-1ß, IL-6, IFN-γ and MPO levels were found significantly higher and Occludin levels were found significantly lower in the colitis group compared to the control group (p < 0.05). TNF-α and IFN-γ levels decreased and Occludin levels increased in colon tissue of Post-Vit D group compared to colitis group (p < 0.05). IL-1ß, IL-6 and IFN-γ levels were decreased in colon tissue of Post-Cur and Pre-Cur groups (p < 0.05). MPO levels in colon tissue decreased in all treatment groups (p < 0.05). Vitamin D and Curcumin treatment significantly reduced inflammation and restored the normal histoarchitecture of the colon. From the present study findings, we can conclude that Vitamin D and Curcumin protect the colon from acetic acid toxicity with their antioxidant and anti-inflammatory potential.Brief synopsis: In this study; distal colon, distal ileum, jejunum and serum physiopathology in colitis induced by acetic acid and intestinal permeability were investigated. The roles of vitamin D and curcumin in this process were evaluated.


Assuntos
Colite Ulcerativa , Colite , Curcumina , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Curcumina/uso terapêutico , Curcumina/farmacologia , Antioxidantes/farmacologia , Ácido Acético/toxicidade , Fator de Necrose Tumoral alfa , Interleucina-6 , Vitamina D/efeitos adversos , Ocludina/farmacologia , Qualidade de Vida , Ratos Wistar , Colo , Colite/induzido quimicamente , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Inflamação
12.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902109

RESUMO

κ-Selenocarrageenan (KSC) is an organic selenium (Se) polysaccharide. There has been no report of an enzyme that can degrade κ-selenocarrageenan to κ-selenocarrageenan oligosaccharides (KSCOs). This study explored an enzyme, κ-selenocarrageenase (SeCar), from deep-sea bacteria and produced heterologously in Escherichia coli, which degraded KSC to KSCOs. Chemical and spectroscopic analyses demonstrated that purified KSCOs in hydrolysates were composed mainly of selenium-galactobiose. Organic selenium foods through dietary supplementation could help regulate inflammatory bowel diseases (IBD). This study discussed the effects of KSCOs on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in C57BL/6 mice. The results showed that KSCOs alleviated the symptoms of UC and suppressed colonic inflammation by reducing the activity of myeloperoxidase (MPO) and regulating the unbalanced secretion of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10). Furthermore, KSCOs treatment regulated the composition of gut microbiota, enriched the genera Bifidobacterium, Lachnospiraceae_NK4A136_group and Ruminococcus and inhibited Dubosiella, Turicibacter and Romboutsia. These findings proved that KSCOs obtained by enzymatic degradation could be utilized to prevent or treat UC.


Assuntos
Carragenina , Colite Ulcerativa , Microbioma Gastrointestinal , Compostos Organosselênicos , Animais , Camundongos , Colite Ulcerativa/prevenção & controle , Colite Ulcerativa/terapia , Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Carragenina/farmacologia , Carragenina/uso terapêutico , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico
13.
Gastroenterology ; 164(3): 344-372, 20230301. tab
Artigo em Inglês | BIGG - guias GRADE | ID: biblio-1436078

RESUMO

Biomarkers are used frequently for noninvasive monitoring and treatment decision making in the management of patients with ulcerative colitis (UC). This American Gastroenterological Association (AGA) guideline is intended to support practitioners in decisions about the use of biomarkers for the management of UC. A multidisciplinary panel of content experts and guideline methodologists used the Grading of Recommendations Assessment, Development and Evaluation framework to prioritize clinical questions, identify patient-centered outcomes, and conduct an evidence synthesis on the clinical performance of serum C-reactive protein (CRP), fecal calprotectin, and fecal lactoferrin as biomarkers of disease activity in patients with established UC in symptomatic remission or with active symptoms. The guideline panel used the Evidence-to-Decision framework to develop recommendations for the use of biomarkers for monitoring and management of UC and provided implementation considerations for clinical practice. The guideline panel made 7 conditional recommendations. In patients with UC in symptomatic remission, the panel suggests the use of a biomarker- and symptom-based monitoring strategy over a symptom-based monitoring strategy. For patients in symptomatic remission, the panel suggests using fecal calprotectin <150 µg/g, normal fecal lactoferrin, and/or normal CRP to rule out active inflammation and avoid routine endoscopic assessment of disease. In patients with UC with moderate to severe symptoms, the panel suggests using fecal calprotectin >150 µg/g, elevated fecal lactoferrin, or elevated CRP to inform treatment decisions and avoid routine endoscopic assessment of disease. However, in patients in symptomatic remission but elevated biomarkers, and in patients with moderate to severe symptoms with normal biomarkers, the panel suggests endoscopic assessment of disease to inform treatment decisions. In patients with UC with mild symptoms, the panel suggests endoscopic assessment of disease activity to inform treatment decisions. The panel identified the use of a biomarker-based monitoring strategy over an endoscopy-based monitoring strategy as a knowledge gap. The panel also proposed key implementation considerations for optimal use of biomarkers, and identified areas for future research. In patients with UC, noninvasive biomarkers, including fecal calprotectin, fecal lactoferrin, and serum CRP can inform disease monitoring and management.


Assuntos
Humanos , Biomarcadores , Colite Ulcerativa/prevenção & controle , Lactoferrina/análise , Endoscopia Gastrointestinal , Complexo Antígeno L1 Leucocitário/análise
14.
J Sci Food Agric ; 103(7): 3645-3658, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36645331

RESUMO

BACKGROUND: Tilapia skin collagen hydrolysates (TSCHs) are the product of enzymatic hydrolysis of collagen, which is mainly extracted from tilapia skin. The components of TSCHs have recently been reported to play a preventive role in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). However, it has not been illustrated whether TSCHs can prevent against DSS-induced UC via the gut microbiota and its derived metabolites. RESULTS: TSCHs are mainly composed of amino acids, which have similar characteristics to collagen, with most having a molecular weight below 5 kDa. In a mouse model of UC, TSCHs had no toxic effect at a dose of 60 g kg-1 and could reduce body weight changes, colon length, histopathological changes and score, and the level of the serum inflammatory cytokine interleukin (IL)-6. Concurrently, 16 S rRNA sequencing showed that TSCHs significantly reduced the abundance of Bacteroidetes and Proteobacteria at the phylum level and norank_f__Muribaculaceae and Escherichia-Shigella at the genus level, while they increased the abundance of Firmicutes at the phylum level and Lachnoclostridium, Allobaculum, Enterorhabdus, and unclassified__f__Ruminococcaceae at the genus level. Target metabolomic analysis showed that TSCHs elevated the concentration of total acid, acetic acid, propanoic acid, and butanoic acid, but reduced isovaleric acid concentrations. Moreover, Pearson correlation analysis revealed that Allobaculum, unclassified_Ruminococcaceae, and Enterorhabdus were positively correlated with acetic acid and butyric acid, but not Escherichia-Shigella. CONCLUSION: These findings suggest that TSCHs can prevent UC by modulating gut microbial and microbiota-derived metabolites. © 2023 Society of Chemical Industry.


Assuntos
Actinobacteria , Colite Ulcerativa , Colite , Tilápia , Animais , Camundongos , Colite Ulcerativa/prevenção & controle , Genes de RNAr , Colo , Ácido Acético , Firmicutes , Bacteroidetes , Ácido Butírico , Colágeno , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
15.
J Pharm Pharmacol ; 75(4): 544-558, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36680771

RESUMO

OBJECTIVES: Toll-like receptor-4 (TLR-4) activation plays a major role in triggering oxidative stress (OS) and inflammation implicated in the pathogenesis of ulcerative colitis (UC). Due to sophorolipids (SLs) antioxidant and anti-inflammatory properties, they are interestingly becoming more valued for their potential effectiveness in treating a variety of diseases. This study was designed to explore the effect of SLs produced by microbial conversion of Moringa oleifera oil cake using isolated yeast Yarrowia lipolytica against UC induced by acetic acid (AA) in rats. METHODS: The produced SLs were identified by FTIR, 1H NMR and LC-MS/MS spectra, and administered orally for 7 days (200 mg/kg/day) before AA (2 ml, 4% v/v) to induce UC intrarectally on day eight. Biochemically, the levels of TLR-4, c-Jun N-terminal kinase (JNK), nuclear factor kappa B-p65 (NFκB-p65), interleukin-1beta (IL-1ß), malondialdehyd, glutathione, Bax/Bcl2 ratio and the immunohistochemical evaluation of inducible nitric oxide synthase and caspase-3 were assayed. KEY FINDINGS: SLs significantly reduced OS, inflammatory and apoptotic markers in AA-treated rats, almost like the reference sulfasalazine. CONCLUSIONS: This study provided a novel impact for SLs produced by microbial conversion of M. oleifera oil cake against AA-induced UC in rats through hampering the TLR-4/p-JNK/NFκB-p65 signalling pathway.


Assuntos
Colite Ulcerativa , Colite , Moringa oleifera , Yarrowia , Ratos , Animais , Ácido Acético/farmacologia , Yarrowia/metabolismo , Cromatografia Líquida , Receptor 4 Toll-Like/metabolismo , Ratos Wistar , Espectrometria de Massas em Tandem , Colite/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , NF-kappa B/metabolismo , Colo
16.
J Agric Food Chem ; 71(2): 1201-1213, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36621895

RESUMO

Ulcerative colitis has been consistently associated with gut microbiota imbalance and disturbed immune system. Emerging research suggests a protective function of polyphenols on prevention and treatment of ulcerative colitis, yet underlying mechanisms remain unclear. Fu brick tea, a postfermented tea, contains abundant polyphenols with anti-inflammatory and antioxidant properties. In the present study, we found that prophylactic supplementation of polyphenols extracted from Fu brick tea (FBTP) dose-dependently alleviated colitis symptoms, immune cells infiltration, and pro-inflammatory cytokines secretion in mice suffering dextran sulfate sodium induced murine colitis. FBTP substantially reshaped gut microbiota and promoted microbial transformation of tryptophan into indole-3-acetic acid (I3A), thereafter leading to aryl hydrocarbon receptor (AHR)-mediated protection from colitis through enhanced expressions of IL-22 and tight junction proteins (i.e., ZO-1, occluding and claudin-1) in colon. Multiomics integration analyses revealed strong connections between I3A, tryptophan-metabolizing bacteria, AHR activity, and pathological phenotypes of colitis. Notably, FBTP failed to significantly alleviate colitis symptoms in the absence of gut microbiota, while intragastric administration of I3A could imitate benefits of FBTP on colitis alleviation and intestinal epithelial homeostasis through a direct enhancement in AHR activity in microbiota-depleted mice. These findings further determine the key role of gut microbiota controlled I3A-AHR signaling in mediating the FBTP on colitis alleviation. This study provides the first data proposing the FBTP as a natural prebiotic for colitis alleviation through the gut microbiota-dependent modulation of the AHR pathway. Most importantly, we also identified I3A as a key microbial metabolite targeted by FBTP for exhibiting health-promoting effects.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Triptofano/metabolismo , Polifenóis/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Colo/microbiologia , Bactérias/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
17.
Fundam Clin Pharmacol ; 37(3): 493-507, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36514874

RESUMO

Ulcerative Colitis (UC) is a chronic inflammatory condition of the large intestines. Although great advances have been made in the management of the disease with the introduction of immunomodulators and biological agents, the treatment of UC is still a challenge. So far, there are no definitive therapies for this condition. Statins are potent inhibitors of cholesterol biosynthesis, possess beneficial effects on primary and secondary prevention of coronary heart disease, and have high tolerability and safety. Furthermore, they may have potential roles in UC management due to their possible anti-inflammatory, immunomodulatory, and antioxidant activities. This systematic review aimed to gather information about the potential benefits of statins for managing UC, reducing inflammation and disease remission in animal models. A systematic search was performed in PubMed/MEDLINE, Scopus, Web of Science, and Virtual Health Library. The data were summarized in tables and critically analyzed. After the database search, 21 relevant studies were identified as eligible for this review. Preclinical studies using several colitis-induction protocols and various statins have shown numerous beneficial effects of these drugs on reducing disease activity, inflammatory profile, oxidative stress, and general clinical parameters of animals with UC. These studies revealed the potential of statins against the pathogenesis of UC. However, there are still important gaps regarding the molecular mechanisms of action of statins, leading to some contradictory results. Thus, more research on the molecular level to determine the roles of statins in colitis should be carried out to elucidate their mechanisms of action.


Assuntos
Colite Ulcerativa , Colite , Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico
18.
Biomed Pharmacother ; 155: 113767, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271551

RESUMO

The industrial processing of Aconitum carmichaelii roots for use in Traditional Chinese Medicine generates a high amount of waste material, especially leaves. An acidic polysaccharide fraction isolated from these unutilized leaves, AL-I, was in our previous work shown to contain pectic polysaccharides. This study aimed to investigate the protective effect of AL-I on ulcerative colitis for the possible application of A. carmichaelii leaves in the treatment of intestinal inflammatory diseases. AL-I was found to alleviate symptoms and colonic pathological injury in colitis mice, and ameliorate the levels of inflammatory indices in serum and colon. The production of short- and branched-chain fatty acids was also restored by AL-I. The observed protective effect could be due to the inhibition of NOD1 and TLR4 activation, the promotion of gene transcription of tight-junction proteins, and the modulation of gut microbiota composition like Bacteroides, Dubosiella, Alistipes and Prevotella,. A regulation of serum metabolomic profiles being relevant to the bacterial change, such as D-mannose 6-phosphate, D-erythrose 4-phosphate and uric acid, was also observed.


Assuntos
Aconitum , Colite Ulcerativa , Colite , Microbiota , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Pectinas , Ácido Úrico/efeitos adversos , Manose , Receptor 4 Toll-Like , Colite/induzido quimicamente , Polissacarídeos/efeitos adversos , Colo/patologia , Folhas de Planta , Ácidos Graxos , Fosfatos , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
19.
Int J Biol Macromol ; 222(Pt A): 573-586, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115453

RESUMO

This study aimed to investigate the protective effect of Moringa oleifera polysaccharide (MOP) on ulcerative colitis (UC) and explore its mechanism through the combined analysis of microbiome, metabolome and transcriptome. A UC model in mice was established using dextran sulphate sodium. After a 21-day experiment, results showed that MOP could inhibit the weight loss and disease activity index in UC mice. The intervention of MOP decreased the expression of inflammatory cytokines and promoted the secretion of tight junctions. MOP could promote the growth of probiotics such as Lachnospiraceae_NK4A136, Intestinimonas and Bifidobacterium in UC mice. The results of metabolomic and transcriptomic analysis indicated that MOP could regulated the metabolism of polyunsaturated fatty acid and PPAR, TLR and TNF signalling pathways might play important roles in the process. Altogether, MOP could be used as a functional food to prevent UC.


Assuntos
Colite Ulcerativa , Colite , Microbiota , Moringa oleifera , Camundongos , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Colite Ulcerativa/metabolismo , Sulfato de Dextrana , Transcriptoma , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Metaboloma , Modelos Animais de Doenças , Colo/metabolismo , Camundongos Endogâmicos C57BL , Colite/metabolismo
20.
Nutrients ; 14(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145086

RESUMO

Ulcerative colitis (UC) patients often avoid foods containing fermentable fibers as some can promote symptoms during active disease. Pectin has been identified as a more protective fermentable fiber, but little has been done to determine the interaction between pectin and bioactive compounds present in foods containing that fiber type. Quercetin and chlorogenic acid, two bioactives in stone fruits, may have anti-cancer, anti-oxidant, and anti-inflammatory properties. We hypothesized that quercetin and chlorogenic acid, in the presence of the fermentable fiber pectin, may suppress the expression of pro-inflammatory molecules, alter the luminal environment, and alter colonocyte proliferation, thereby protecting against recurring bouts of UC. Rats (n = 63) received one of three purified diets (control, 0.45% quercetin, 0.05% chlorogenic acid) containing 6% pectin for 3 weeks before exposure to dextran sodium sulfate (DSS, 3% for 48 h, 3x, 2 wk separation, n = 11/diet) in drinking water to initiate UC, or control (no DSS, n = 10/diet) treatments prior to termination at 9 weeks. DSS increased the fecal moisture content (p < 0.05) and SCFA concentrations (acetate, p < 0.05; butyrate, p < 0.05). Quercetin and chlorogenic acid diets maintained SLC5A8 (SCFA transporter) mRNA levels in DSS-treated rats at levels similar to those not exposed to DSS. DSS increased injury (p < 0.0001) and inflammation (p < 0.01) scores, with no differences noted due to diet. Compared to the control diet, chlorogenic acid decreased NF-κB activity in DSS-treated rats (p < 0.05). Quercetin and chlorogenic acid may contribute to the healthy regulation of NF-κB activation (via mRNA expression of IκΒα, Tollip, and IL-1). Quercetin enhanced injury-repair molecule FGF-2 expression (p < 0.01), but neither diet nor DSS treatment altered proliferation. Although quercetin and chlorogenic acid did not protect against overt indicators of injury and inflammation, or fecal SCFA concentrations, compared to the control diet, their influence on the expression of injury repair molecules, pro-inflammatory cytokines, SCFA transport proteins, and NF-κB inhibitory molecules suggests beneficial influences on major pathways involved in DSS-induced UC. Therefore, in healthy individuals or during periods of remission, quercetin and chlorogenic acid may promote a healthier colon, and may suppress some of the signaling involved in inflammation promotion during active disease.


Assuntos
Colite Ulcerativa , Colite , Água Potável , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Butiratos/metabolismo , Proteínas de Transporte/metabolismo , Ácido Clorogênico/metabolismo , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana , Dieta , Fibras na Dieta/metabolismo , Modelos Animais de Doenças , Água Potável/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Inflamação/metabolismo , Interleucina-1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , NF-kappa B/genética , NF-kappa B/metabolismo , Pectinas/metabolismo , Pectinas/farmacologia , Quercetina/metabolismo , Quercetina/farmacologia , RNA Mensageiro/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...